Cannabidiol-enriched hemp essential oil obtained by an optimized microwave-assisted extraction using a central composite design

Dennis Fiorinia, Serena Scortichinib, Giulia Bonacucinib, Nicolas G. Greco, Eugenia Mazzarab, Riccardo Petrellib, Jacopo Torresib, Filippo Maggib,*, Marco Cespi

School of Science and Technology, University of Camerino, 62032 Camerino, Italy
School of Pharmacy, University of Camerino, 62032 Camerino, Italy

ARTICLE INFO

Keywords:
Hemp
Essential oil
Cannabidiol
Microwave-assisted extraction
Hydrodistillation
Design of an experiment

ABSTRACT

The increase of cultivation of industrial hemp (Cannabis sativa L.) all over the world offers new opportunities for the industry to manufacture innovative products from this multipurpose crop. In this regard, the hemp essential oil represents a niche product with potential interest for the pharmaceutical, nutraceutical, cosmeceutical and agrochemical companies. On this basis, in the present work we used the microwave-assisted extraction (MAE) to get an essential oil enriched in bioactive compounds, especially cannabidiol (CBD), from the dry inflorescences of the Italian variety CS (Carmagnola Selezionata). For this purpose, the operative conditions to increase the essential oil yield and CBD concentration in terms of microwave irradiation power (W/g), extraction time (min) and water added to the plant matrix after moistening (%), were optimized using a central composite design (CCD) approach using a Milestone ETHOS X device. The conventional hydrodistillation (HD) performed for 240 min was used for comparative purposes. The qualitative compositions of essential oils obtained by MAE and HD were analysed by GC-MS, whereas the quantitative detection of CBD and main terpenoids (α-pinene, β-pinene, myrcene, limonene, terpinolene, (E)-caryophyllene, α-humulene and caryophyllene oxide) was achieved by GC-FID. Furthermore, the enantiomeric distribution of the chiral constituents (α-pinene, β-pinene, limonene, (E)-caryophyllene and caryophyllene oxide) was determined using chiral chromatography. Results showed that the MAE treatment, using high irradiation power and relatively long extraction times, increased significantly the content of CBD in the essential oil while maintaining high oil yield values when compared with conventional HD. The enantiomeric excess of three chiral monoterpenes (α-pinene, β-pinene and limonene) was determined, with the (+)-enantiomers being predominant, whereas (E)-caryophyllene and caryophyllene oxide were enantiomerically pure. In conclusion, the MAE was successfully applied to hemp dry inflorescences in order to obtain a CBD-rich essential oil which may be exploited in several industrial applications.

1. Introduction

Hemp (Cannabis sativa L.), also known as the ‘fibre-type’ cannabis, is a legal crop cultivated from ages all around the world and its different parts, e.g. fibre, seeds, leaves and flowers are exploited in several sectors such as automotive industry, construction, paper, innovative materials, bioenergy, textile, varnishes and inks, as well as in medicine, foods, nutraceuticals and cosmetics (Ranalli and Venturi, 2004).

Hemp is an eco-friendly and sustainable crop since it enriches the soil in organic matter (> 10 t/ha), requires no agrochemical input and moderate fertilizer requirement, and owns adsorption properties toward pesticides, that is helpful in sustainable agricultural systems (Amaducci et al., 2008; Finnan and Styles, 2013; Vukčević et al., 2015).

Indeed, hemp can be used in crop rotation with wheat, barley, corn and sunflower (Finnan and Styles, 2013). Different varieties are cultivated in the EU (EC Regulation, 2004), with most of them coming from France and Italy (Cappelletto et al., 2001). At present, the EU is the third producer of hemp in the world after China and Canada, with 25,000 ha of cultivations (Di Candilo, 2006). In Italy the hemp cultivation area is estimated at around 4000 ha with about 2000 farmers, most of them using organic agriculture (EC Regulation, 2007), and an overall income of ~ 40 min € per year.

Nowadays, C. sativa provides the bulk material for medical preparations, namely Bedrocan®, Epidiolex®, Sativex®, and others, that are used for the treatment of chronic diseases, multiple sclerosis, neuropathic pain and epilepsy (Barnes, 2006; Devinsky et al., 2018; Palmieri et al., 2015).
The availability of hemp biomass produced during manufacturing and processing of fibre and seeds represents a valuable resource to exploit and valorize on an industrial level. Thus, the increase of hemp cultivation in the years to come may represent an important occasion to valorize the potential of this multipurpose crop by developing innovative products from the huge amount of biomass produced during plant processing (Calzolari et al., 2017). In this regard, the hemp essential oil could be a product of interest for the pharmaceutical, nutraceutical and cosmeceutical industries and useful in integrated pest management (IPM) programs (Fiorini et al., 2019; Benelli et al., 2018a, b). In addition, its production may satisfy the increasing demand for oily extracts from cannabis (Fiorini et al., 2019). The essential oil may act as a good pesticide, notably against aphids, houseflies and ticks (Benelli et al., 2018a, b; Tabari et al., 2020), giving an added value to the whole production chain.

The hemp essential oil is produced in the capitulate trichomes that are particularly abundant in inflorescences and, to a minor extent, in leaves (Happyana et al., 2013). The main volatile components can be divided into three groups depending on the cultivar, plant organ, storage, processing and extraction technique: i.e. monoterpenes including α-pinene, myrcene and terpinolene, sesquiterpenes such as (E)-caryophyllene, α-humulene and caryophyllene, and cannabinoids with cannabidiol (CBD) as the predominant compound, whereas δ-9-tetrahydrocannabinol (THC) is missing or occurs at trace levels (Mead, 2017; Benelli et al., 2018a, b; Bertoli et al., 2010). Thus, the hemp essential oil is an interesting non-psychotropic product showing a complex mixture, made up of terpenes and cannabinoids, able to produce the so-called ‘entourage-effect’ (Nahler et al., 2019).

CBD is a non-psychotropic cannabinoid endowed with notable immunomodulatory, anticonvulsant, anti-inflammatory, neuroprotective and anticancer effects (Appendino et al., 2011; Morelli et al., 2014; Russo, 2016; Nabissi et al., 2016; Watt and Karl, 2017; Gertsch, 2018). It acts on CB2 receptors and modulates the psychoactive effects of THC. Noteworthy, it was shown that CBD may defend the plant against herbivore attacks due to its antifeedant properties (Park et al., 2019). (E)-caryophyllene is an FDA-approved additive, recently recognized as a ligand of CB receptors with a non-cannabinoid structure. Notably, it is a selective agonist of CB-2 receptors, modulating the inflammatory processes and may also synergize the CBD action (Gertsch, 2008; Chicca et al., 2014; Sut et al., 2018). This sesquiterpene has also been found as an effective mosquitoicidal and acaricidal agent (Pavela et al., 2020; Tabari et al., 2020). α-Humulene is reported as an anti-inflammatory and anticancer agent (Legault and Pichette, 2007), and owns insecticidal and acaricidal potential (Benelli et al., 2018b; Tabari et al., 2020). Caryophyllene oxide, the degradation product of (E)-caryophyllene, is an FDA-approved food additive owning anticancer activity and synergistic effects with chemotherapies (Fidyt et al., 2016; Hanušová et al., 2017). α-Pinene interacts with the cholinergic system improving memory and learning and counterbalances the toxicity of THC (Lewis et al., 2018). Myrcene has sedative and relaxant effects (Do Vale et al., 2002).

The most common extraction techniques to get essential oil from hemp both at laboratory and industrial scale are steam- (SD) and hydrodistillation (HD). However, they show some disadvantages, e.g., they are time-consuming, request high energy and water input, and sometimes cause thermal degradation of thermosensitive molecules (Filly et al., 2014). In the last years, solvent-free approaches have been designed for the extraction of volatile organic compounds (VOCs) from medicinal and aromatic plants (MAPs). Among them, microwave-assisted extraction (MAE) appears to be an effective, reliable, green technology to improve the extraction of VOCs from different kinds of matrices without the use of organic solvents (Lucchesi et al., 2004). This novel and efficient method works through microwave radiation causing vibration of water and other polar molecules with an increase of temperature and evaporation of water that disrupts cells and matrices with the release of VOCs from the matrix by azetotropic distillation (Filly et al., 2014). In this way, the diffusion of target compounds is easier and faster, saving time and energy. When applied to the extraction of essential oils, MAE revealed to have higher yields and lower costs, compared with conventional techniques such as SD and HD (Filly et al., 2014; Petigny et al., 2014). MAE efficacy is related to the selection of suitable operative conditions. Specifically, for every plant matrix and solvent composition, the effectiveness of the extraction process is dependent on the solvent-to-feed ratio, extraction temperature and time, and microwave irradiation power. Usually, an increase of microwave power and extraction time is associated with an increase of the yield even if this effect tends to level off after certain values. However, excessive heating of the matrices has to be avoided since it could damage some thermosensitive compounds. Concerning the solvent-to-feed ratio, a general trend cannot be defined since the results are strictly related to the matrix and solvent type (Veggi et al., 2012).

Recently, we showed that pretreatment with microwaves or oven heating has a significant effect on modulating the chemical profile of the hemp essential oil, for instance increasing the content of bioactive CBD and (E)-caryophyllene (Fiorini et al., 2019). On this basis, we decided to optimize for the first time the MAE process to get a bioactive-enriched essential oil from hemp using the Milestone ETHOS X for the microwave green extraction of natural products (Türk et al., 2018).

For this purpose, a statistical approach, the response surface methodology (RSM) - central composite design (CCD), was applied in order to understand the relationship between the hemp volatile constituents, essential oil yield and extraction parameters. The determined mathematical models were validated and then used to maximize the oil yield and recovery of bioactive compounds such as phytocannabinoids. The RSM methodology proved to be an effective tool in the MAE optimization of the extraction recovery of some essential oils (Petigny et al., 2014; Abedi et al., 2017; Mollaei et al., 2019), although it has been rarely applied for the evaluation of the extraction efficiency on single bioactive compounds. To the best of our knowledge, the optimization of the marker hemp volatile compounds as a function of extraction conditions has never been performed. To complete the work, we also determined the enantiomeric distribution for the main hemp optically active compounds, namely α-pinene, β-pinene, limonene, (E)-caryophyllene and caryophyllene oxide, by using chiral chromatography.

2. Materials and methods

2.1. Plant material

Dry inflorescences of hemp were provided by Coop Canapa – Società Cooperativa Agricola, San Severino Marche, Italy (https://www.coopcanapa.it). They were obtained from female individuals of C. sativa cv CS (Cannagrola Selezione) cultivated in Castellbelino (N 43°30′07.80″; E 13°11′16.33″, 200 m a.s.l.) and harvested in October 2018. Hemp inflorescences were dried under darkness at 20°C and 50% R.H. until constant weight, afterward they were crushed into small pieces and stored into jute bags until used.

2.2. Microwave-assisted extraction (MAE)

MAE was performed using a Milestone ETHOS X (Milestone, Italy) advanced microwave extraction system (Fig. 1). This is a multimode microwave reactor of 2.45 GHz, equipped with two magnetrons with a maximum delivered power of 1800 W (2 × 950 W) and an infrared sensor monitoring the temperature. The experiments were carried out at atmospheric pressure using a glass reactor (Pyrex) of 5 L capacity closed with a glass cover (Fig. 1). Before extraction dry biomass (500 g) was moistened for 30 min in a vessel filled with 5 L of distilled water, then well-drained and weight to be processed through MAE. The system was configured using the ‘Fragrances set-up’, consisting of a glass
Clevenger-type apparatus above the oven, condensing the volatile compounds continuously and allowing water to return inside the reactor. After each extraction run, the essential oil, having a density of 0.893 g/mL, was separated from the water layer and collected in vials sealed with PTFE-silicon septa that were stored at 4°C until chemical analysis. The essential oil yield was expressed in % (w/w). Three main parameters were optimized during extractions: microwave irradiation power (W/g of moistened biomass), extraction time (min) and water added after moistening (% of moistening biomass).

2.3. Design of the experiments (DoE)

The effect of MAE conditions on the essential oil yield and composition was evaluated by applying a response surface methodology, specifically a central composite design. For a three factors study as in this case, a CCD is composed by:

- 8(2³) factorial experiments, designated by the coded variables -1 or 1.
- 6 (2*3) axial experiments, defined by the coded variables -1.682 or +1.682.
- 4 central experiments, specified by the coded variable 0.

The presence of the 6 axial points set at 1.682 in addition to a 2³ full factorial design assures the obtaining of a spherical experimental domain and design rotatability. Moreover, the 4 central points guarantee uniform precision within the experimental domain (Lewis et al., 1999a).

The complete list of all the 18 extractions runs with the corresponding coded and uncoded variables is reported in Table 1. Each extraction run was characterized in terms of:

- Essential oil yield (%), calculated as follow:

\[\text{EO yield} \% = \left(\frac{\text{weight of EO (g)}}{\text{weight of dry biomass (g)}} \right) \times 100 \]

- Concentration of hemp marker volatile compounds (g/100 g of essential oil), determined by GC-FID as reported in the section 2.4.

In the DoE terminology the essential oil yield and the concentration of bioactive compounds represent the responses of the design while the microwave irradiation power, extraction time and water added after moistening are the design variables or factors.

2.4. Quantification of the marker compounds by GC-FID analysis

Quantification of α-pinene, myrcene, terpinolene, (E)-caryophyllene, α-humulene, caryophyllene oxide and CBD in the hemp essential oil was performed by means of gas chromatography coupled with flame ionization detection (GC-FID) using an Agilent 6850 GC series. Analytical standards of the above compounds were purchased from Sigma-Aldrich (Milan, Italy). The hemp essential oil was diluted with analytical grade n-hexane (6 μL in 594 μL of n-hexane) and 0.5 μL injected in split mode (split ratio 1:30) into the GC. The injector temperature was 300°C. The carrier gas was hydrogen produced by a generator PGH2 – 250 from DBS Analytical Instruments, Vigonza, Italy. The initial gas flow in the column was 3.7 mL/min. Chromatography was performed on a 5%-phenyl-methylpolysiloxane coated capillary column (HP-5, 30 m l., 0.32 mm i.d., 0.25 μm f.t., Agilent Technologies). The oven temperature was held at 60°C for 3 min, then raised until 350°C at 25°C/min and held for 1 min, for a total run time of 15.60 min. The FID temperature was set at 360°C, and hydrogen and air flow were 40 and 400 mL/min, respectively. The quantification was performed by using the calibration curves obtained for α-pinene, myrcene, terpinolene, (E)-caryophyllene, α-humulene, caryophyllene oxide and CBD which were built by preparing stock standard solutions at 7 different concentrations in the range 0.004–9.6 mg/mL. Correlation coefficients ranged from 0.9991 to 0.9998. β-Pinene and (E)-β-ocimene were quantified using the calibration curve obtained for α-pinene; limonene and 1,8-cineole were quantified by the terpinolene calibration curve.

2.5. GC–MS analysis

The study of essential oil chemical profiles was carried on an Agilent 6890 N GC-MS system equipped with a 5973N single quadrupole detector and an autosampler 7863 (Agilent, Wilmington, DE). The capillary column used for separation of peaks was coated with 5% phenylmethylpolysiloxane (HP-5MS, 30 m l. × 0.25 mm i.d., 0.1 μm f.t., Agilent). The oven was thermostatted at 60°C for 5 min, then ramp at 4°C/min up to 220°C, finally ramp at 11°C/min to 280°C, isothermal for 15 min. Injector and detector temperatures were 280°C. The carrier gas was He (99.5 %) flowing at 1 mL/min. The oils were diluted 1:100 in analytical-grade n-hexane (Sigma-Aldrich) and injected in split-mode with a split ratio of 1:50. The mass spectra were acquired in full scan in the range 29.0–400.0 uma using the electron ionization (EI) mode with an electron energy of 70 eV. For the peak assignment, the MSD ChemStation (Agilent, Version G1701DA D.01.00) and the NIST Mass Spectral Search Program were used. The identification of the major components was carried out by co-injection with authentic standards.
Table 1
MAE conditions for all the 18 runs performed according to the central composite design (CCD). The set of each single factor is reported both as coded and uncoded variables.

<table>
<thead>
<tr>
<th>Run</th>
<th>Point typea</th>
<th>Coded variables</th>
<th>Uncoded variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>−1</td>
<td>Microwave power</td>
</tr>
<tr>
<td></td>
<td></td>
<td>−1</td>
<td>Extraction time</td>
</tr>
<tr>
<td></td>
<td></td>
<td>−1</td>
<td>Water</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>+1</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>−1</td>
<td>60.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>−1</td>
<td>35.0</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>−1</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+1</td>
<td>60.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>−1</td>
<td>35.0</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>+1</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+1</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>−1</td>
<td>35.0</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>−1</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>−1</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+1</td>
<td>35.0</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>+1</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>−1</td>
<td>60.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+1</td>
<td>55.0</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>−1</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+1</td>
<td>60.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+1</td>
<td>55.0</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>+1</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+1</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+1</td>
<td>55.0</td>
</tr>
<tr>
<td>9</td>
<td>A</td>
<td>−1.682</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>80.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>45.0</td>
</tr>
<tr>
<td>10</td>
<td>A</td>
<td>+1.682</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>80.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>45.0</td>
</tr>
<tr>
<td>11</td>
<td>A</td>
<td>0</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>−1.682</td>
<td>46.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>45.0</td>
</tr>
<tr>
<td>12</td>
<td>A</td>
<td>0</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+1.682</td>
<td>113.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>45.0</td>
</tr>
<tr>
<td>13</td>
<td>A</td>
<td>0</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>80.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>−1.682</td>
<td>28.2</td>
</tr>
<tr>
<td>14</td>
<td>A</td>
<td>0</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>+1.682</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>80.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.2</td>
<td>61.8</td>
</tr>
<tr>
<td>15</td>
<td>C</td>
<td>0</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>80.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>45.0</td>
</tr>
<tr>
<td>16</td>
<td>C</td>
<td>0</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>80.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>45.0</td>
</tr>
<tr>
<td>17</td>
<td>C</td>
<td>0</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>80.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>45.0</td>
</tr>
<tr>
<td>18</td>
<td>C</td>
<td>0</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>80.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>45.0</td>
</tr>
</tbody>
</table>

a This column defines, for each experimental condition, whether a Factorial (F), Axial (A) or Central (C) point is represented.

(Sigma-Aldrich). In addition, we calculated the temperature-programmed retention indices (RIs) according to Van den Dool and Kratz (1963) formula:

$$RI = 100n + 100(\tau - t_n)/(n + 1 - \tau_n)$$

where n is the carbon atoms of the alkane eluting before the peak, τ_n and t_{n+1} are the retention times (RTs) of the alkanes eluting before and after the peak, and t_n is the RT of the peak to be assigned. The coherence of RI was overlapped with the MS matching using the ADAMS, NIST 17, FFNSC3 and WILEY275 libraries (Adams, 2007; NIST 17, FFNSC3, 2015). The relative content of peaks was determined by normalization of peak areas without using response factors.

2.6. Central composite design analysis

2.6.1. Model determination and analysis

For each single response, all the results of the 18 runs were analyzed by multilinear regression using a full quadratic model:

$$y = \hat{\beta}_0 + \sum_{i=1}^{n} \hat{\beta}_i x_i + \sum_{i=1}^{n} \hat{\beta}_{ii} x_i^2 + \sum_{i<j}^{n} \hat{\beta}_{ij} x_i x_j$$

Where y is the response, $\hat{\beta}_0$ is the model constant, $\hat{\beta}_i$ is the coefficient corresponding to the variables x_i (linear terms), $\hat{\beta}_{ii}$ are the coefficients associated with the variables x_i (quadratic term) and $\hat{\beta}_{ij}$ are the coefficients associated with the variables x_i and x_j (first-order interaction terms).

The fitting of the full quadratic model generates a large set of explanatory variables (the coefficients) and the equation could suffer from some degree of multicollinearity, with consequent biased parameters and sometimes with the wrong sign, and from poor prediction ability (overfitting) (Chatterjee and Simonoff, 2013). For these reasons, all the generated full quadratic models were subjected to a variable selection process (model reduction) in order to improve the precision of the estimated coefficients of the retained variables, minimize the mean square error and, more in general, satisfy the principle of parsimony (Forster, 2000; Chatterjee and Simonoff, 2013).

The model reduction has been performed by stepwise regression in backward elimination mode. This procedure carried out a sequence of fit beginning with the model containing all the predictors, and then iteratively removing the least useful predictor (i.e., the one with the lowest p-value), one-at-a-time. Among all the sets of generated models, the best one has been selected by evaluating the adjusted coefficient of multiple determination (R^2_adj) and the Mallows’ Cp statistic (Zuccaro, 1992; Minitab blog, 2013; Chatterjee and Simonoff, 2013).

The selected models were then evaluated through ANOVA, coefficient and residual analysis.

The model fitting, selection and analysis has been performed with the Minitab 18 statistical software.

2.6.2. MAE optimization and model validation

The models developed as reported in the previous section allow to understand the relationships between the factors and every single response and to map the experimental domain. Such information is enough to define the best operative conditions only for every single response. However, in the presence of more responses, as in this case, it is necessary to identify the more suitable experimental conditions able to provide satisfactory results for all the responses at the same time (multiple responses optimization). The multiple responses optimization has been performed using the desirability method. For every single response, a partial desirability function (Dp) varying from 0 (completely unsatisfactory results) to 1 (completely satisfactory results) has been identified. All the Dp are then combined together calculating the geometric mean, which represents the composite desirability function D. Similarly, D ranges between 0 (at least one response is completely unsatisfactory) and 1 (all the responses are completely satisfactory) (Lewis et al., 1999b; Minitab 18 Support a, 2020).

For the optimization of yield and CBD responses, a linear partial desirability function that maximizes the responses has been chosen, setting the target values and the unacceptable limits as a function of the possible results obtainable in the experimental domain investigated.

Together with the optimized conditions, namely those with the highest D value, a further set of conditions having low D and consequently low performance has also been identified. These two sets of variables were named V1 and V2, respectively. The conditions V1 and V2 were experimentally applied during MAE and their essential oil yield and CBD content determined as for all the runs of the CCD sequence. The experimental values of V1 and V2 were then compared with those predicted by the models (predicted fit values and 95 % prediction interval) (Minitab 18 Support b, 2020).

Multiple responses optimization (desirability), as well as the calculation of the 95 % prediction intervals for a certain predicted value, were carried out using the software Minitab 18. The MAE extractions V1 and V2 were performed in triplicate.
2.7. Hydro-distillation (HD)

In order to compare the extraction efficiency of MAE with respect to conventional hydrodistillation (HD), 500 g of dry inflorescences were inserted into a 10L flask equipped with a mantle system Falc MA (Falc Instruments, Treviglio, Italy) and 5L of deionized water were inserted. Afterward, HD was made by a glass Cleveenger-type apparatus for 240 min. This extraction time was selected based on previous works (Benelli et al., 2018a, b; Fiorini et al., 2019). At the end of the process, the essential oil, having a density of 0.886 g/mL, was collected in vials equipped with PTFE-silicon septa and stored at 4°C until chemical analysis. The extraction experimental conditions (factors) influence the measured responses (essential oil yield and concentration of bioactive compounds in the essential oil). The best models for each response are reported in Table 2 together with the parameters used for the model selection, R^2 and R^2_{adj} and Mallows’ Cp statistic. Interestingly, only two responses could be properly modeled, the yield and the CBD concentration. For all the cases, the very low values of R^2_{adj} and R^2_{pred} suggest as all the tested models were completely unsuitable. In one case, i.e. α-pinene concentration, we were unable to identify a model (all the evaluated models possessed a R^2_{adj} lower than 0.001). In all these cases, since both the lack of fit and regression were not significant (Table 2), it can be concluded that the response variations among all the experimental runs can be mainly attributed to intrinsic variability. On the other side, for the oil yield and CBD concentration, the model is adequate (lack of fit not significant) and describes most of the variability observed (regression significant). In addition, for both responses the residual analysis (Figures 1SM and 2SM, Supplementary Material) did not highlight any violation of the assumptions of regression, while the coefficient analysis excluded the issue of multicollinearity (correlation between predictors) of the model (Table 1SM, Supplementary Material).

The identification of a suitable model for the yield and CBD concentration allows understanding the relationships between the factors and responses and even to map response variation inside the experimental domain. The effect of each single factor on a single response can be easily visualized using the main effect plots (Fig. 2). For both responses, all the factors work in the same direction, even if in a quantitative and qualitative different manner, with microwave power and extraction time that increase the oil yield and CBD content, while the amount of water added acts in the opposite direction. It has also to be highlighted that the microwave power and extraction time possess the strongest effect, especially for the yield, compared with water. The global effect of all variables together can be instead observed using surface plots (Fig. 3). These graphs were built setting the value of the less relevant factor, i.e. water, to the coded value of 0 (corresponding to decarboxylation reactions occurring during this stage (Fiorini et al., 2019) may contribute to increasing the recovery of cannabinoids, and this may be boosted by the MAE process. On this basis, we optimized the operative conditions for MAE using dry female inflorescences obtained from the Italian hemp variety CS (Carmagnola Selezione).

3.1. DoE analysis

The analysis of MAE process using a CCD approach requires the identification of suitable mathematical models able to describe how the extraction experimental conditions (factors) influence the measured responses (essential oil yield and concentration of bioactive compounds in the essential oil). The best models for each response are reported in Table 2 together with the parameters used for the model selection, R^2_{adj} R^2_{pred} and Mallows’ Cp statistic. Interestingly, only two responses could be properly modeled, the yield and the CBD concentration. For all the cases, the very low values of R^2_{adj} and R^2_{pred} suggest as all the tested models were completely unsuitable. In one case, i.e. α-pinene concentration, we were unable to identify a model (all the evaluated models possessed a R^2_{adj} lower than 0.001). In all these cases, since both the lack of fit and regression were not significant (Table 2), it can be concluded that the response variations among all the experimental runs can be mainly attributed to intrinsic variability. On the other side, for the oil yield and CBD concentration, the model is adequate (lack of fit not significant) and describes most of the variability observed (regression significant). In addition, for both responses the residual analysis (Figures 1SM and 2SM, Supplementary Material) did not highlight any violation of the assumptions of regression, while the coefficient analysis excluded the issue of multicollinearity (correlation between predictors) of the model (Table 1SM, Supplementary Material).

The identification of a suitable model for the yield and CBD concentration allows understanding the relationships between the factors and responses and even to map response variation inside the experimental domain. The effect of each single factor on a single response can be easily visualized using the main effect plots (Fig. 2). For both responses, all the factors work in the same direction, even if in a quantitative and qualitative different manner, with microwave power and extraction time that increase the oil yield and CBD content, while the amount of water added acts in the opposite direction. It has also to be highlighted that the microwave power and extraction time possess the strongest effect, especially for the yield, compared with water. The global effect of all variables together can be instead observed using surface plots (Fig. 3). These graphs were built setting the value of the less relevant factor, i.e. water, to the coded value of 0 (corresponding to
45% for the unceded value). However, since for the factor water only the linear terms are significant, a variation of the water amount would simply determine a shift of the surface along the z axis (i.e., that of the response), without any change in the shape and intensity of the curvature. The surface plot for the yield (Fig. 3A) is characterized by a low curvature and point out as the highest yield can be recovered working at high microwave irradiation power and long extraction times, keeping the water percentage added at the lowest level. Concerning the CBD, the surface plot is slightly more complex, due to the higher relevance of the quadratic term of microwave power. In this case, the surface (Fig. 3B) shows a more marked curvature and the highest concentrations were obtained using long extraction times at moderately high irradiation power (around 1.1 W/g). Also in this case, water displayed the same effect observed for the yield.

An interesting aspect regards how the single bioactive components in the essential oil are related to the yield. In this respect, DoE analysis seems to suggest as an increase in the yield could be due to an increase in the recovery of CBD. To test this hypothesis a Pearson correlation analysis has been performed between the yield and the concentration of all the bioactive components quantified by GC-FID. The results showed as only CBD has a moderate positive correlation with the yield, resulting in a statistically significant (P-value of 0.0084) correlation coefficient of 0.6 (Fig. 4). For all the other components the correlation was very weak (always lower than 0.4) and never statistically significant (Table 2SM, Supplementary Materials). This may be explained by the fact that the plant material suffered from partial evaporation of more volatile mono- and sesquiterpenes during drying. Thus, it results as the yield variation during the 18 experimental runs is partially due to a concomitant variation of the CBD content.

3.2. MAE optimization and model validation

The yield and CBD content were contemporaneously optimized using the Desirability approach. In both cases, the two responses were maximized, and the global desirability function was plotted in Fig. 5. The higher desirabilities can be obtained using microwave power values around 1.1 W/g and extraction times of about 115 min, while for microwave power values lower than 0.9 W/g and extraction times lower than 60 min the desirability was 0, indicating an unacceptable low result in terms of yield and/or CBD concentration. To validate the models, two further extractions, V1 and V2, were carried out setting the MAE conditions in order to obtain the highest and lowest desirability (D = 1 and 0, respectively). The MAE experimental conditions, the predicted values and the 95% interval of predictions are reported in Table 3. The comparison between the predicted values and those experimentally obtained, reported in Fig. 6, demonstrates the validity of the models in the prediction of the performance of MAE for hemp. According to the optimized process, the highest essential oil yield and CBD content were 0.15 ± 0.04 and 9.33 ± 0.69 %, respectively.
3.3. DoE analysis comparison using GC-FID and GC–MS data

The DoE analysis and optimization has been carried out using the GC-FID quantitative method (sect. 2.4). However, in the essential oil analysis it is common to present semi-quantitative data obtained at GC–MS (Pavela et al., 2017). Therefore, we decided to investigate the reliability of GC–MS semi-quantitative data in DoE analysis and optimization. Firstly, a Pearson correlation analysis has been performed between all the monitored bioactive compounds concentrations determined by both methods for each run of the CCD. The results highlight a strong correlation, always statistically significant, for all the compounds (Pearson $r \geq 0.92$ and P-value ≤ 0.0001) (Table 3SM, Supplementary Materials). The only exception was found for the α-humulene, which showed a lower correlation (Pearson r equal to 0.735) though highly significant (P-value equal to 0.0005). Thus, from a qualitative point of view (in terms of analyte response to diverse extractive conditions) the two analytical techniques can be considered equivalent. Subsequently, we analyzed the DoE replacing the GC-FID data with the ones from GC–MS. As observed in Table 4SM, Supplementary Materials, the model analysis results almost equivalent. Also in this case, only the CBD model described properly the experimental data. It is worth noting that the model parameters of CBD obtained using GC–MS data are exactly the same of those detected using the GC-FID method. The only difference is the slightly better descriptive capacity of the latter (in terms of R^2_{adj} and R^2_{pred}). A visual comparison of the two models can carried out using the contour plots as reported in Fig. 3SM, Supplementary Materials.

3.4. Comparison of essential oil chemical profiles obtained by HD and MAE

Overall, both HD and MAE (V1 optimized sample) yielded similar amounts of oils, namely 0.14 and 0.15%, respectively. However, MAE reduced the whole extraction time to only 115 min compared with 240 min needed for HD.

Table 4 reports the chemical composition of the essential oils obtained from hemp inflorescences subjected to HD and MAE. As concerning the chemical profiles obtained, no qualitative differences were observed in the two chromatograms as determined by GC–MS (Fig. 7). Overall, a total of 71 components were identified in the two oils, accounting for 91.0–92.0 % of the total compositions. The main fraction of the oils was given by sesquiterpene hydrocarbons, followed by monoterpenic hydrocarbons, cannabinoids, oxygenated sesquiterpenes and oxygenated monoterpenes. The main constituents in both essential oils (in decreasing order of relative abundance) were (E)-caryophyllene, CBD, α-humulene, α-pine, caryophyllene oxide and myrcene. These chemical profiles were qualitatively overlapping, at least for the major terpenoid constituents, with those previously reported by other authors.
for the same and other hemp cultivars (Bertoli et al., 2010; Benelli et al., 2018a; Iseppi et al., 2019).

It is worth mentioning the occurrence in both essential oils of trace amounts of other cannabinoids such as cannabidiolvar, cannabicitran, cannabichromene and THC.

When comparing the two extraction techniques using the GC-FID quantification method, MAE resulted more effective than HD in yielding higher amounts of CBD (9.3 vs 5.6 %, respectively) as well as those of the main sesquiterpenes (E)-caryophyllene and α-humulene (46.5 vs 36.1 %, and 18.8 vs 14.2 %, respectively). On the other hand, the amounts of the main monoterpenes were higher in the HD sample (Fig. 8). The increase in the CBD content in MAE may be related to the higher energy penetration of microwaves boosting the decarboxylative reactions into the plant matrix that convert cannabидioic acid into the respective alcoholic form. In addition, the high energy provided to the plant matrix alter the quantitative ratio of the terpene profile by favouring the extraction of the high-boiling points sesquiterpenes over the low boiling-point monoterpenes. Indeed, during MAE more energy is given to the system so that some of the more volatile compounds can be lost due to overheating of the vapor.

The hemp essential oils obtained using both extraction techniques are endowed with a complex composition in which a couple of bioactive compounds such as the phytocannabinoids (E)-caryophyllene and CBD appear to be the most important ones. In this respect, MAE appears to be more selective than HD for CBD. Notably, MAE increased the recovery of CBD from the plant matrix with shorter extraction times and reduced costs related to energy and water consumption (Filly et al., 2018). Thus, the chemical profile obtained appears to be interesting for the systemsothat some ofthemorevolatilecompoundscanbe
lostduetooverheatingofthevapor.

The hemp essential oils obtained using both extraction techniques are endowed with a complex composition in which a couple of bioactive compounds such as the phytocannabinoids (E)-caryophyllene and CBD appear to be the most important ones. In this respect, MAE appears to be more selective than HD for CBD. Notably, MAE increased the recovery of CBD from the plant matrix with shorter extraction times and reduced costs related to energy and water consumption (Filly et al., 2018). Thus, the chemical profile obtained appears to be interesting for the systemsothat some ofthemorevolatilecompoundscanbe
lostduetooverheatingofthevapor.

3.5. Enantiomer distribution of chiral components

In the present study we assessed for the first time the enantiomeric distribution and excess (EE) of chiral constituents in hemp essential oil obtained by MAE in order to determine its organoleptic and chemical-biological properties.

The enantiomers of α-pinene, β-pinene, limonene, (E)-caryophyllene and caryophyllene oxide were successfully separated by a chiral column (HP 20β) and identified using GC–MS (Table 5). Notably, the order of elution of the enantiomers of α-pinene and β-pinene was consistent with that of a study where the same chiral stationary phase was used (Dahmane et al., 2015). The three monoterpenes were found as enantiomeric pairs, whereas the two sesquiterpenes [(E)-caryophyllene and caryophyllene oxide] were exclusively present as the (−)-enantiomer form. For α-pinene the EE was 90.17 %, with the predominance of the (+)-enantiomer; for β-pinene the EE was 74.17 %, with the prevalence of the (+)-enantiomer; for limonene the EE was 86.50 %, with (+)-limonene being the most prevalent enantiomer. It is worth mentioning that the (+)-enantiomers of α- and β-pinene showed higher biological activity than the (−)-enantiomers (Silva et al., 2012).

The enantiomers occurring in the hemp essential oil have different aroma descriptors. (+)-α-Pinene has a slightly minty scent, whereas the (-)-enantiomer has a pine-like odor; the (+)-limonene owns a citrus-like note whereas the (-)-limonene has a turpentine-like smell; β-pinene has a woody-pine smell (Bordiga and Nollet, 2019). (−)-(E)-caryophyllene has a weak woody-spicy odor (Gertsch, 2008). (−)-(E)-Caryophyllene oxide is the key component responsible for marijuana and hashish detection by police dogs (Stahl and Kunde, 1973).

4. Conclusions

In the last years, the global market of CBD and hemp derivatives is continuously growing, acquiring importance from multiple standpoints, namely economics, medicine, industry and agriculture. This has been reflected by a significant increase in hemp cultivation area worldwide. In the US, the market of CBD accounted for 200 mln $ in 2017 and is
expected to increase further, with a prediction of 450 mln $ in 2020. Noteworthy, the European Union is destined to become the largest world market for hemp derivatives, and several companies have invested more than 500 mln $ in manufacturing different kinds of products (The European Cannabis Report, https://prohibitionpartners.com). The request for CBD has stimulated the search for innovative, green and effective extraction methods. In this respect, the huge production of valuable products such as CBD-rich essential oils. The latter may be appealing for the pharmaceutical, nutraceutical, cosmetic and agrochemical industries due to the presence of valuable bioactive constituents (Di Pierro, 2015; Lodzki et al., 2003; Scuderi et al., 2009; Russo, 2011; Jastrząb et al., 2019; Park et al., 2019). Most of them, such as CBD and terpenoids, are considered safe, being included in the EU database on ‘food flavourings’ or in that of US GRAS (Russo, 2011). The findings of the present study revealed that MAE is a valid, time- and cost-saving technique for the production of bioactive hemp essential oils with high content of CBD and (E)-caryophyllene. Notably, the MAE operative conditions play a crucial role in boosting the CBD content into the final product. The potential of this product to be exploited in different commercial applications should be evaluated in future studies. The manufacture of CBD-enriched essential oils may represent an added value for the implementation of the hemp production chain.
CRediT authorship contribution statement

Fig. 7. GC–MS chromatograms of the hemp essential oil obtained by (A) HD and (B) MAE (V1 in Table 3). Peak numbering refers to Table 4.

Fig. 8. Comparison between the marker bioactive compounds concentration in the hemp essential oil obtained by hydrodistillation (HD) and microwave-assisted extraction (MAE) (V1 in Table 3).

Table 5
Enantiomeric distribution of the major chiral components in the hemp essential oil obtained by MAE.

<table>
<thead>
<tr>
<th>Enantiomer compound</th>
<th>RT a</th>
<th>RI b</th>
<th>MAE f</th>
<th>% in EO c</th>
<th>Enant. % d</th>
<th>ee% e</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-)-α-pinene</td>
<td>15.627</td>
<td>1022</td>
<td>0.33</td>
<td>4.92</td>
<td>90.17</td>
<td></td>
</tr>
<tr>
<td>(+)-α-pinene</td>
<td>15.964</td>
<td>1028</td>
<td>6.44</td>
<td>95.08</td>
<td>90.17</td>
<td></td>
</tr>
<tr>
<td>(+)-β-pinene</td>
<td>19.24</td>
<td>1081</td>
<td>1.81</td>
<td>87.09</td>
<td>74.17</td>
<td></td>
</tr>
<tr>
<td>(-)-β-pinene</td>
<td>19.50</td>
<td>1085</td>
<td>0.27</td>
<td>12.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(+)-limonene</td>
<td>20.22</td>
<td>1097</td>
<td>2.48</td>
<td>93.25</td>
<td>86.50</td>
<td></td>
</tr>
<tr>
<td>(-)-limonene</td>
<td>20.52</td>
<td>1102</td>
<td>0.18</td>
<td>6.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(-)-(E)-caryophyllene</td>
<td>44.74</td>
<td>1497</td>
<td>35.57</td>
<td>100.00</td>
<td>100.00</td>
<td></td>
</tr>
<tr>
<td>(-)-caryophyllene oxide</td>
<td>57.44</td>
<td>1740</td>
<td>3.94</td>
<td>100.00</td>
<td>100.00</td>
<td></td>
</tr>
</tbody>
</table>

a The retention time of the different enantiomers from the chiral column (HP Chiral 20β) was as indicated in the table.
b Linear retention index calculated using a mixture of n-alkanes (C7-C30).
c Absolute content of individual enantiomers in the oil; data from GC-FID analysis.
d Relative content of enantiomeric pairs.
e Enantiomeric excess.
f Data refer to run 8 included in Table 1.
Funding acquisition, Supervision, Writing - original draft, Writing - review & editing. Marco Cеспi: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Software, Validation, Writing - original draft, Writing - review & editing.

Declaration of Competing Interest

Authors declare no competing interest.

Acknowledgements

The authors thank the Coop Canapa for providing the plant material, FKV – Milestone Srl for its assistance during the optimization procedure of ETHOS X, and Regioni Marche (Programma di Sviluppo Rurale 2014/2020 – M16.1.A.2 Finanziamento dei Gruppi Operativi PSRMarche20142020_M16.1.A.2_ID_SIAR29012) and the University of Camerino (Fondo di Ateneo per la Ricerca) for financial support.

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at https://doi.org/10.1016/j.indcrop.2020.112688.

References

and Technology, Gaithersburg, USA.